Tuesday, 6 August 2013

COMPUTER BOOSTS

Thanks to research being conducted at the California Institute of Technology, regular microscopes could soon be capable of much higher-resolution imaging. Instead of making changes to the microscopes’ optics, the Caltech researchers are instead focusing on using a computer program to process and combine images from the devices.
The main hardware change to an existing microscope involves installing an array of about 150 LEDs beneath the stage, in place of the regular light. Using each bulb in that array one at a time, 150 images are then acquired of the sample that’s being viewed. In each image, the light is originating from a slightly different (and known) direction. The computer program then stitches all of those images together into one cohesive image of the sample.
A rendering of the Caltech system
That composite image represents not only the light’s intensity, but also the light phase information (related to the angle at which the light travels) for each of the sub-images. Using that light field data, the program allows users to zoom in on any part of the overall image, while still being able to make out details. It’s also able to digitally correct for flaws, such as areas which are initially out of focus.
Ultimately, images produced by the system contain 100 times more information than those produced by an unaided microscope. Additionally, it creates images with both the wide field of view of a lower-powered lens, and the resolution of a stronger one. Ordinarily, microscope users have to choose between getting wide shots of samples in which details can’t be made out, or detailed shots of just a small part of the sample – sort of like using either a wide-angle or close-up lens on a camera.
It should cost approximately US$200 to add the technology to one existing microscope. The scientists hope that it could be used in applications such as digital pathology, wafer inspection and forensic photography, or by medical clinics in developing nations

Artificial Memories

An ongoing collaboration between the Japanese Riken Brain Science Institute and MIT’s Picower Institute for Learning and Memory has resulted in the discovery of how to plant specific false memories into the brains of mice. The breakthrough significantly extends our understanding of memory and expands the experimental reach of the new field of optogenetics.
The ability to learn and remember is a vital part of any animal's ability to survive. In humans, memory also plays a major role in our perception of what it is to be human. A human is not just a survival machine, but also reads, plans, plays golf, interacts with others, and generally behaves in a manner consistent with curiosity and a need to learn.
Forgetting where we put the keys is a standard part of the human condition, but in the last few decades our knowledge of more serious memory disorders has grown rapidly. These range from Alzheimer's disease, where the abilities to make new memories and to place one's self in time are seriously disrupted, to Post-Traumatic Stress Disorder, in which a memory of a particularly unpleasant experience cannot be suppressed.
Such disorders are a powerful force driving research into discovering how healthy memory processes function so that we can diagnose and treat dysfunctional memory function.
In previous work, the team of researchers at the Picower Center for Neural Circuit Genetics were able to identify an assembly of neurons in the brain's hippocampus that held a memory engram, or data concerning a sequence of events that had taken place previously. In recalling a memory, the brain uses this data to reconstruct the associated events, but this reconstruction generally varies slightly to substantially from what actually occurred.
The researchers were able to locate and identify the neurons encoding a particular engram through the use of optogenetics. Optogenetics is a neuromodulation technique that uses a combination of genetic modification and optical stimulation to control the activity of individual neurons in living tissue, and to measure the effects of such manipulation.
The MIT team genetically engineered the hippocampal cells of a new strain of mouse so that the cells would form a light-sensitive protein called a channelrhodopsin (ChR) that activates neurons when stimulated by light. This involved engineering the mice to add a gene for the synthesis of ChR, but that gene was also modified so that ChR would only be produced when a gene necessary for memory formation was activated. In short, only neurons actively involved in forming memories could later be activated by light.
Initial work using the genetically engineered mice focused on determining what neurons in the hippocampus are associated with forming a new, specific memory. There were at least two schools of thought on how memory engrams were stored – locally or globally. They discovered that a memory is stored locally, and can be triggered by optically activating a single neuron.
"We wanted to artificially activate a memory without the usual required sensory experience, which provides experimental evidence that even ephemeral phenomena, such as personal memories, reside in the physical machinery of the brain,” says lead author Steve Ramirez.
The new results came from a chain of behavioral experiments. The researchers identified the set of brain cells that were active only when a mouse was learning about a new environment. The genes activated in those cells where then coupled with the light-sensitive ChR.
These mice were then exposed to a safe environment in a first box, during which time the neurons which were actively forming memories were labelled with ChR, so they could later be triggered by light pulses.
Next the mice were placed in a different chamber. While pulsing the optically active neurons to activate the memory of the first box, the mice were given mild foot shocks. Mice are particularly annoyed by such shocks, so this created a negative association.
When the mice were returned to the first box, in which they had only pleasant experiences, they clearly displayed fear/anxiety behaviors. The fear had falsely become associated with the safe environment. The false fear memory itself could be reactivated at will in any environment by triggering the neurons associated with that false memory.
Cartoon of the MIT-Riken experiment. In the left-hand box, the mouse learns the safe envir...
“Remarkably, the recall of this false memory recruited the same fear centers that natural fear memory recall recruits, such as the amygdala,” says Xu Liu, a post-doctoral fellow and co-first author of the study. The recall of this false memory drove an active fear response in associated parts of the brain, making it indistinguishable from a real memory. “In a sense, to the animal, the false memory seems to have felt like a ‘real’ memory,” he said.
These kinds of experiments show us just how reconstructive the process of memory actually is,” said Steve Ramirez, a graduate student in the Tonegawa lab and the lead author of the paper. “Memory is not a carbon copy, but rather a reconstruction, of the world we've experienced. Our hope is that, by proposing a neural explanation for how false memories may be generated, down the line we can use this kind of knowledge to inform, say, a courtroom about just how unreliable things like eyewitness testimony can actually be." Perhaps they can also provide a solution for the problem of lost keys.
If, like me, you've always found ping pong a little lacking in flashing lights, Pingtime, an augmented reality project created for the 2013 Rokolectiv Festival in Bucharest, may just take your fancy. Conceived by Sergiu Doroftei, the arts project augments an ordinary table tennis table with projections and sounds by equipping the paddles with sensors and using an infrared camera to track the ball.
Of course hardware alone does not a box of AR tricks make. The team behind the project had to implement some software wizardry too, using the vvvv programming environment for graphics and sound, and the OpenCV computer vision library to help keep an eye on the ball.
The overall effect is striking, with the surface of the table effectively becoming a giant display: a canvas on which to paint lights and colors coordinated with the ensuing ping-pongery. Judging by the video, the whole effect does seem to make the game much harder to play (perhaps as a result of the relative darkness required for the light show as much as anything), but perhaps this is the point.
"Pingtime takes a look into how realtime generated computer responses are affecting reaction time in fast gameplay situations," the video's description goes.
You can see the mesmerizing Pingtime in action by gaming.

Graphene Super Capacitor

Graphene-based supercapacitors have already proven the equal of conventional supercapacitors – in the lab. But now researchers at Melbourne’s Monash University claim to have developed of a new scalable and cost-effective technique to engineer graphene-based supercapacitors that brings them a step closer to commercial development.
With their almost indefinite lifespan and ability to recharge in seconds, supercapacitors have tremendous energy-storage potential for everything from portable electronics, to electric vehicles and even large-scale renewable energy plants. But the drawback of existing supercapacitors has been their low energy density of around 5 to 8 Wh/liter, which means they either have to be exceedingly large or recharged frequently.
Professor Dan Li and his team at Monash University’s Department of Materials Engineering has created a graphene-based supercapacitor with an energy density of 60 Wh/liter, which is around 12 times higher than that of commercially available supercapacitors and in the same league as lead-acid batteries. The device also lasts as long as a conventional battery.
To maximize the energy density, the team created a compact electrode from an adaptive graphene gel film they had previously developed. To control the spacing between graphene sheets on the sub-nanometer scale, the team used liquid electrolytes, which are generally used as the conductor in conventional supercapacitors.
Unlike conventional supercapacitors that are generally made of highly porous carbon with unnecessarily large pores and rely on a liquid electrolyte to transport the electrical charge, the liquid electrolyte in Li’s team’s supercapacitor plays a dual role of conducting electricity and also maintaining the minute space between the graphene sheets. This maximizes the density without compromising the supercapcitor’s porosity, they claim.
To create their compact electrode, the researchers used a technique similar to one used in traditional paper making, which they say makes the process cost-effective and easily scalable for industrial applications.
"We have created a macroscopic graphene material that is a step beyond what has been achieved previously. It is almost at the stage of moving from the lab to commercial development," Professor Li said.

Niac Phase

A dozen inventors have received a chance to demonstrate the potential for their pet space projects as winners of NASA's 2013 Innovative Advanced Concepts (NIAC) Program Phase I awards. The winners were chosen based on their potential to transform future aerospace missions by enabling either breakthroughs in aerospace capabilities or entirely new missions. Read on for a closer look at some of the most promising proposals with a view to how they would work, and where the tricky bits might be hiding.
Each NIAC Phase I winner receives about US$100,000 to spend a year pursuing their ideas, including an initial feasibility study of a novel aerospace concept. The proposals this year include; 3D printing of biomaterials; using galactic rays to map the insides of asteroids; and an "eternal flight" platform that could hover in the Earth's atmosphere.
    The list of this year's awardees includes:
  • Rob Adams of NASA Marshall Space Flight Center – Pulsed Fission-Fusion (PuFF) propulsion system
  • John Bradford of SpaceWorks Engineering – Torpor inducing transfer habitat for human stasis to Mars
  • Hamid Hemmati of NASA Jet Propulsion – Two-dimensional planetary surface landers
  • Nathan Jerred of Universities Space Research Association - Dual-mode propulsion system enabling CubeSat exploration of the Solar System
  • Anthony Longman – Growth adapted tensegrity structures
  • Mark Moore of NASA Langley Research Center - Eternal flight as the solution for 'X'
  • Thomas Prettyman of the Planetary Science Institute – Deep mapping of small solar system bodies with galactic cosmic ray secondary particle showers
  • Lynn Rothschild of NASA Ames Research Center – Biomaterials out of thin air
  • Joshua Rovey of the University of Missouri – Plasmonic force propulsion revolutionizes Nano/PicoSatellite capability
  • Adrian Stoica of NASA Jet Propulsion Lab – Transformers for extreme environments
  • Christopher Walker of the University of Arizona – 10 meter sub-orbital balloon refletor
  • S.J. Ben Yoo of the University of California-Davis – Low-mass planar photonic imaging sensor
Let's take a look at three of the most promising concepts with a view to how they would work, and where the tricky bits might be hiding.

Rob Adams' PuFF pulsed fission-fusion propulsion system

The PuFF propulsion system is a new take on an old idea. To confine a deuterium-tritium plasma to act as a breakeven reactor. People have been trying this seriously for half a century and have not yet succeeded. To base a space drive on such a thing would be extremely speculative.
Rob Adam's PuFF drive in which DT gas is fed into the SCF plasmoid, which in turn is surro...
In the PuFF approach, however, the fusion of the deuterium-tritium fuel is only the first stage of the process. Instead of seeking a particular power output, the fusion reaction is being carried out to provide a source of neutrons. This D-T reaction releases a 3.5 MeV alpha particle, and a neutron with 14.1 MeV of kinetic energy.
The fusion-fission drive concept on the nuclear level (Photo: NASA)
As seen above, in a second stage of nuclear reaction the fusion neutrons can be captured by a uranium nucleus, thereby causing it to fission, releasing some 200 MeV of nuclear energy. Because of the high energy of the fusion neutrons, four to five neutrons will generally be released from uranium fission, rather than the two to three seen with thermal neutrons.
If you send a neutron into a critical mass of fissile material, the resulting chain reaction continues until the critical mass explodes. However, if you have a bit less than a critical mass, the total number of fissions resulting from the input of a swarm of fission neutrons is rather impressive.
Impact of 1,000 fusion neutrons on uranium nuclei will initially cause 1,000 uranium atoms to fission. This will release about 5,000 neutrons in the uranium, owing to the large energy of the fusion neutrons. If the fissile material is one percent away from being a critical mass, some of these neutrons will escape the uranium, but enough will cause fissions that produce 0.99 times 5,000, or 4,950 neutrons. This requires about 1,980 fissions. In the next step, the 4,950 neutrons cause fissions that produce 0.99 times 4,950 neutrons, or 4,900 neutrons, which requires 1,960 fissions.
As the chain goes on, it eventually runs out of steam, as shown by the reduction in the number of neutrons. However, in the course of the not quite critical chain reaction, roughly 200,000 uranium nuclei will have undergone fission. Uranium fission releases about 200 MeV of energy. The original 1,000 fusions that produce the 1,000 free neutrons releases about 19 GeV, but the resulting fissions release about 40,000 GeV. Coupling the fusion neutrons into a not quite critical mass of uranium results in an amplification of the fusion power by a factor of about 2,100, providing plenty of power for a spacecraft drive!
A pulsed drive based on the fusion-fission combination process need not achieve fusion breakeven. Instead, the focus is on fusion-based neutron generation followed by fission-based neutron multiplication. The very largest inertial confinement machines at present produce tens of megajoules per pulse. If the neutron output were directed into a PuFF-type fusion-fission drive, the total nuclear output per pulse could easily be 10 GJ, or about 3 MWh energy release each second – probably 1,000 times the power needed to power a spaceship drive, leaving plenty of room for engineering compromise.

Nathan Jerred's Small-scale Dual-mode Propulsion System

A considerable number of exploratory designs have surfaced, with the common intent of using the nano/pico satellite/probe concept past low-earth orbit. Most of these are single-principle drives, which would be found lacking under some circumstances. For example, a CubeSat might be able to reach velocities required for interplanetary travel using a solar powered ion drive. However, a large number of trajectories would not be feasible because the ion drive does not provide enough thrust for course alteration, course correction, orbital insertion, or other astronavigation challenges.
In such nanoprobes it seems unlikely that two independent propulsion systems can be shoehorned into place while still having adequate performance for interplanetary missions. Jerred's dual-mode propulsion system is a new attempt to address this problem.
Nathan Jerred's dual-mode propulsion system shares most components to enable a high-thrust...
The two modes of which he speaks are a thermal drive and an ion drive. The source of power for both would be radioactive decay, probably of a mass of plutonium 238 (Pu-238). Such radioactive sources have been used in many space missions to provide a heat source for a radioisotope thermoelectric generator (RTG). An RTG powers the Cassini mission, the Mars rover Curiosity, and the New Horizons mission to Pluto.
In Jerred's dual-mode drive, a modified RTG provides power for both drive modes. For the thermal drive, reaction mass in the thermal propulsion propellant tanks is fed through the RTG, therein being heated to about 850° C (1,500° F). This is more than enough to gassify the propellant and generate a high pressure, after which it expands through the nozzle to produce thrust.
Without more engineering information it is very difficult to evaluate how much thrust, but it should be on the order of one Newton (about 1/4 lb). The specific impulse should be in the neighborhood of 300 sec, similar to that of chemical fuels. Running the RTG at a higher temperature is a possibility, which would result in larger specific impulse, but higher temperatures put a strain on the Stirling RTG components.
The second mode of propulsion is the ion drive. In this case, the RTG operates to produce electricity for an ion drive. An RTG that provides 1 kW of heat and about 300 W of electrical power would require about 2 kg (4.4 lb) of Pu-238, the most common isotope used in RTGs. But Pu-238 has a half-life of almost 90 years, which is overkill for, say, a mission to an asteroid or to Mars. If two to three months of propulsive power would be enough for a mission, polonium 210 could be used. It has a half-life of 138 days, and only about 15 g (0.5 oz) would be required to produce 1 kW of heat.
The sample mission for the proposed study is to send a 10 kg (22 lb) payload to Europa. The Phase I study will provide engineering analysis of the major components and look at performance-related compromises which will help determine the feasibility of such a mission. Positive results may lead to an 18 month study that examines the sample mission in more depth.

John Bradford's Torpor to Mars Missions

One problem with space flight at our current state of advancement is that it takes too long. Flight times within the solar system are measured in months or years, during which time astronauts would generally have very little to do, but continue to consume full helpings of food, water, oxygen, and power. Psychologists also suggest that the interminable boredom of long-duration space flights may present substantial difficulties for a crew.
Science fiction has often resorted to inducing suspended animation to avoid these dull periods. The problem with looking to suspended animation for a solution is that humans seem to lack the ability to safely achieve significant levels of hibernation or torpor. Despite this, the profound medical applications that reduced metabolism states could offer have stimulated considerable research on just what causes hibernation, how it differs from torpor, and how it might be induced in mammals without natural access to these states. John Bradford has convinced NASA that it is time to take a serious look for applications in space travel.
A stasis habitat, in which astronauts will gently enter a state of torpor, may help accomp...
The idea isn't to freeze people and thaw/resuscitate people at Mars, or to induce hibernation. True hibernation occurs when an animal allows it's heart rate to drop precipitously, and its body temperature to drop to a few degrees above ambient.
A better model is likely to be a wintering bear. Bears do slow their heart rate to as low as 10 beats per minute (it's normally about 40 when asleep), but only drop their body temperature by about 5° C (9° F). Their long winter sleep is more often called torpor, or winter lethargy. This is the general pattern among the larger mammals which "hibernate." By analogy, people are expected to enter more easily into extended torpor than into true hibernation.
Considerable experimentation has been done in search of triggers for torpor. In the area of drug-like triggers, one study showed rather conclusively that small quantities of hydrogen sulfide in the air would induce a hibernation-like state. Their body temperature fell to about 2° C (4° F) above ambient, and their breathing rate fell by more than 90 percent. Their blood pressure, however, remained high. Researchers have also been able to induce torpor in pigs for several hours without apparent damage.
John Bradford is taking what is known about torpor to perform a "what-if" study. His project will design a torpor module for astronauts on a slow boat to Mars, and will compare the supply and mission requirements for a range of conventional technology assumptions for such missions. This Phase I analysis is only intended to investigate the compatibility of a torpor module with inner solar system voyages. Later in the program, if renewed, he will study how to accomplish the goal of induction and maintenance of torpor in a crew of astronauts.

Ring Weeder

Removing weeds can be annoying, especially in an area with a lot of plants. Ring Weeder slips over the user's index finger and allows for precision weed pulling all the way down to the root.
When taking a hands-on approach to weeding, the challenge is to make sure that the pesky invader is pulled all the way out, root intact. If it's not a clean extraction, there's a very good chance that the weed will just grow back and you'll have to try again.
Ring Weeder is worn like a ring over the gardening glove, and has a forked end that the gardener sticks in the ground behind the weed. The offending plant and root are then removed with a smooth dig and lift motion. It's a simple tool, but one that could prove to be a time saver for anyone who does a lot of gardening.
Vincent Suozzi, the creator of Ring Weeder, is seeking funding on Kickstarter. It has already more than doubled its modest funding goal with almost two weeks of the campaign left to run. Early bird pledge levels have all gone, so backers will now need to offer at least US$10 for a single Ring Weeder.
The Kickstarter pitch below provides more information on the Ring Weeder.

Gaming Lapy

When it comes to gaming laptops, the era of two-inch-thick, weighty monstrosities is truly over. Systems such as Razer's Blade and Blade Pro have carved out a decidedly more pleasing form-factor for the category, and with the GS70, MSI is ready to stake its claim at the top of the market. The new system is particularly thin for its category and packs some high-end hardware within its svelte body.
The GS70 is aimed firmly at the top end of the market. It starts at US$1799.99, comes in at 0.85-inches (2.15 cm) thick and weighs 5.73 lb (2.6 kg). Running Windows 8, the system boasts some impressive internals including an Intel Haswell Core i7-4700HQ processor, an NVIDIA GeForce GTX 765M 2 GB GPU and 16 GB of DDR3L 1600MHz RAM.
The system is just 0.85 inches thick
The GS70's 17.3-inch anti-reflective display comes in at a full 1920 x 1080 resolution and it's possible to output to three displays at up to 4K resolution through the built-in HDMI and Mini DisplayPort. In terms of connectivity, there are four USB 3.0 ports, three audio jacks and a 720p webcam. There are also Killer E2200 Game Networking and Killer N1202 2x2(a/b/g/n) cards on board.
The system's SteelSeries keyboard features anti-ghosting technology and color backlighting and the laptop is fitted with a six-cell 120w battery, though there's no word on how long it will run on a single charge.
MSI GS70 front view
The GS70 also employs a dual fan thermal solution to keep the machine cool. The system pulls heat from the top of the laptop, dissipating it at a 45-degree upward angle, a technique that MSI claims will guarantee a cool gaming experience.
There are two versions of the GS70 available, coming in at $1799.99 and $1999.99. The lower cost system features a 128 GB SSD hard drive and 750 GB HDD, while its more expensive cousin comes with a 128 GB SSD RAID and 1TB HDD configuration.
In terms of competition, the GS70 looks fairly well placed. It matches the Blade Pro's specs while offering more RAM, and while it might lack its rival's LCD trackpad feature, its prices do start $500 lower than Razer's machine.